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Abstract

Space-time data are ubiquitous in the environmental sciences. Often, as is the case with
atmospheric and oceanographic processes, these data contain many different scales of spatial
and temporal variability. Such data are often non-stationary in space and time and may
involve many observation/prediction locations. These factors can limit the effectiveness of
traditional space-time statistical models and methods. In this article, we propose the use of
hierarchical space-time models to achieve more flexible models and methods for the analysis
of environmental data distributed in space and time. The first stage of the hierarchical model
specifies a measurement-error process for the observational data in terms of some “state”
process. The second stage allows for site-specific time series models for this state variable.
This stage includes large-scale (e.g., seasonal) variability plus a space-time dynamic process
for the “anomalies”. Much of our interest is with this anomaly process. In the third stage, the
parameters of these time series models, which are distributed in space, are themselves given a
joint distribution with spatial dependence (Markov random fields). The Bayesian formulation
is completed in the last two stages by specifying priors on parameters. We implement the
model in a Markov chain Monte Carlo framework and apply it to an atmospheric data set of
monthly maximum temperature.
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1 Introduction

Many environmental processes involve variability over space and time. For example, meteorol-
ogists are typically interested in the time evolution of certain atmospheric variables (e.g., wind,
temperature, moisture) over specified spatial domains. One need only examine the governing hy-
drodynamical equations of the atmosphere (e.g., Holton 1992) to see that such dynamical processes
must involve complicated spatial structure, temporal structure, and spatio-temporal interactions.
However, the statistical characterization of such complicated processes via traditional space-time
approaches is hampered by the need to specify these space, time, and space-time interaction
components of variation. The space-time variability is further complicated by the notion that
there can often be very different spatial behavior at different points in time, as well as different
temporal variability at different locations in space. These difficulties, plus the large data sets typ-
ical of many environmental problems, often require practitioners to apply potentially unrealistic
simplifying assumptions. Although we cannot escape the “curse of dimensionality”, we can take
advantage of recent increases in computational speed and numerical advances (e.g., Markov chain
Monte Carlo) that allow us to implement Bayesian space-time dynamical models in a hierarchical
framework. Such specifications provide simple strategies for incorporating complicated space-time
interactions at different stages of the model’s hierarchy, and the models are feasible to implement
in high dimensions.

There are several examples of hierarchical space-time models applied to environmental prob-
lems. For instance, Hughes and Guttorp (1994) used hidden Markov models with unobserved
weather states to model space-time atmospheric precipitation. Brown et al. (1994) applied a
hierarchical model to a relatively low dimensional space-time air pollution problem.

Similarly, several recent examples of Bayesian space-time modeling have been reported in the
literature. Hainsworth and Mardia (1992) extended the Bayesian Markov random field (MRF)
image restoration work of Geman and Geman (1984) to image sequences. Handcock and Wallis
(1994) used a Bayesian kriging approach to space-time modeling of meteorological fields. In
addition, Huang and Cressie (1996) and Wikle (1996) developed empirical Bayesian space-time

Kalman filter models for the investigation of snow water equivalent and monthly precipitation,



respectively. Waller et al. (1997) employed hierarchical Bayesian space-time models for mapping
disease rates.

In this article we illustrate the Bayesian hierarchical view in space-time settings. A flexible,
five-stage hierarchical model is presented. We let Y, later indexed by both space and time,
represent the primary variable of interest. The first stage of the model specifies a measurement
error model for the observational data, denoted by Z; typically, Z is an observation of Y with
error. The second stage of the model allows for (i) site-specific time series models for Y, and
(ii) the incorporation of space-time dynamics. These dynamical terms are denoted by X. In the
third stage, the parameters of the site-specific time series models are themselves endowed with
priors (Markov random fields) that generate spatial dependence structures. Also, the dynamical
terms X are modeled in the third stage. This aspect is central to this article and distinguishes
our approach from other hierarchical space-time formulations (Gelfand et al. 1995; Waller et al.
1997). The final two stages complete the Bayesian formulation by specifying priors on parameters.

In some sense we re-pose the fundamental challenge of space-time modeling: How does one
effectively model spatial and temporal structures? The Bayesian hierarchical strategy that we
propose allows complicated structure to be modeled in terms of means at various stages, rather
than a model for a massive joint covariance matrix. Furthermore, the models proposed here
offer the analyst various opportunities to explore and employ trade-offs between rich time-lagged,
though site-specific, time series models, and models based on more direct specifications of spatial
structures, but at short time lags.

We believe that the class of models discussed here offer a useful framework for many settings.
Nevertheless, the models are not the most general. A variety of additions or variants are possible.
Issues we considered in developing this model include implementations in very large data problems
and characterization of underlying space-time dynamic processes (see West and Harrison (1989)
for an overview of Bayesian dynamic models). In particular, we envision space-time data sets
involving many observation/prediction locations and potentially very long data records, so that
models with space, time, and space-time interaction structure are needed. We also require models
that are capable of handling a variety of features occurring at varying space and time scales.

Third, relative ease in computation was considered. While Markov chain Monte Carlo (MCMC)



is a powerful and useful technique, rich models in very high dimensions lead to technical problems
in its implementation. Hence, the very large data settings we consider require some concessions

in model generality.

2 Notation

Suppose Y(s,t) denotes the value of the process of interest at location s and time ¢, where
(s,t) € M and M is a lattice or grid in space-time. The resolution of M must be sufficiently rich
to allow for desired predictions, interpolations, etc. An alternative view begins with models that
are indexed by continuous space and time variables. One can then analyze the implied behaviors
at the grid level.

Assume that there are S sites and T" time points, and hence the number of grid pointsis S xT'.
The notation s for sites can be refined to allow spatial information to be specified. For example,
in two spatial dimensions we could write s = (k,l), in Cartesian coordinates. However, in this
section and the next, it is convenient to continue with the coordinate-free notation.

Depending on the modeling strategy, it may be helpful to “arrange” the process in different
ways. To that end, let Y(s,) be the T-vector of time series values at site s. Let Y(,¢) be the
matrix of spatially gridded values of the process at time ¢. Let Y, denote a vectorization of the
matrix Y (,t). Also, we let

Y ={Y(s,t): (s,t) € M}.

Hierarchical modeling involves the specification of a series of conditional models. As we develop
our formulation, we let 6, subscripted by the stage number at which it is first introduced as a
condition, represent a collection of model parameters. Other symbols are reserved for primary
variables that are the focus of the modeling strategy. Also, throughout the paper, we use the
following notation, popularized by Gelfand and Smith (1990): For a random vector U, let [U]
represent the joint probability density function of U, and let [U|V] represent the conditional

density of U, given the vector V.



3 A Hierarchical Space-Time Model

A casual summary of the five stages of the basic hierarchical space-time model is presented in

Table 1 for convenience.

Table 1: Hierarchical Model

Stage | Variables Model Sub-model
1 Data [ZY,61]
2 Process Yy, B,X,02]
3 Large & small scales (i, 8, X603 = (0,,03,0x)]
Spatial prior: means (1416,
Spatial prior: seasonalities 18165]
Space-time dynamics [X|0x]
4 Model parameters [01,62,603]604 = (04(1),64(2),04(3))]
Measurement variances [01]604(1)]
Model variances [02]04(2)]
[0/04(12)]
[05104(8)]
Dynamical parameters [0x1604(X)]
5 | Hyperparameters 161] = [04(1]104(2))104 ())604(5)]04(X)]

3.1 First Stage: Measurement Process

Let Z denote observational data. A statistical measurement error model is then specified:

[2]Y, 61], (1)

where 61 represents a collection of parameters. This model can be tailored to a variety of sampling
plans. Perhaps the simplest is that we observe, with error, the process of interest (Y) at some
sites and times. That is, the data set is Z = {Z(s,t) : (s,t) € D}, where D C R%. A standard
example is to assume that, conditional on Y and 6, the Z(s, t) are independent and that in each

case

Z(s,t) ~ GGU(Y(Sat),Uz,t)- (2)

In this case, 6; = {O'it : (s,t) € D} is the set of measurement error variances.

More interesting models are possible. In particular, observations Z € D C R? need not



coincide with the Y process (Y € M); we need only construct a probability model (1) for such
observations given the gridded values of Y. (The reader should not infer that we believe this step
is “simple.”) As another important example, note that spatial and/or temporal averaging schemes
can often be modeled via linear operations on Y. For example, spatial averaging yields data given
by Z; = K Y + e, where the measurement errors, e, are from some multivariate distribution. In

some cases, it may be appropriate to include some unknown parameters in K.

3.2 Second Stage: Large- and Small-Scale Features.

The suggested modeling strategies given below for the process Y are particularly relevant for
atmospheric and oceanographic processes. Such processes are expected to display both strong
seasonal variations and regional structures.

The model for Y is conditional on three processes, denoted by p, 3, and X = {X(s,t) : (s,t) €
M}, and a collection of parameters 3. We separate large-scale temporal behavior from that at

short time scales. Assume that for each site and time point,
Y(s,t) = p(s) + M(t;8(s)) + X(s,t) + (s, 1), (3)

where
e 1 (s) represents a site-specific mean. Define p = (u(1),. .., u(S)).

e M(t;3(s)) is a large-scale temporal model with site specific parameters, 3(s). For climate
data, we would typically model seasonal or monthly effects by letting M be a “cosine func-

tion” or a collection of indicator variables for monthly means. Define 8 = (3(1),...,8(S)).
e the X (s,t)’s represent a short-time scale, dynamical process.
e the v(s,t)’s are zero-mean random variables that model noise.

The role of the X-process is to account for both spatial and temporal dynamics beyond those
accounted for in long term means and seasonal behavior. An appeal to terminology from the

atmospheric/oceanographic and allied sciences is illustrative: We roughly view the contributions



to Y modeled through p and M as climatic, whereas we think of the adjustments to climate,
modeled by X, as weather.

Once the model for X is specified, attention is turned to the ~(s,t)’s. These quantities
represent the unexplained variations in the second stage. A key question is how much space-time
structure is to be modeled through the specification of the joint distribution of the (s, t)’s. In
principle, one must model an ST" X ST covariance matrix. However, the point of the hierarchical
approach is that modeled features, such as X, explain much of the space-time structure of the
Y process, so that one might assume that the Y (s,t)’s are all conditionally independent random

variables. Here, we assume:
Y (s,1) ~ N(p(s) + M(t; (s)) + X (s, 1), 0%(s)), (4)
where 03 = (0%(1),...,0%(9)).

3.3 Third Stage: Spatial Structures and Dynamics.

We assume that p,3, and X are mutually independent, conditional on third-stage parameters,

3. We also assume that 63 can be partitioned as 3 = (6,,603,0x ), leading to

12, B, X 03] = [1210,]1810][ X |0x]. (5)

To capture gross spatial structures, we envision use of spatial models, such as Markov random
fields, for [p|6,] and [3|6s].

Physically and/or experimentally based dynamical models for X are possible. A popular and
flexible collection of models are (one-step) Markovian time evolution models (e.g., see Berliner,

1996). Formally, we assume that
[X160x] = JTIX (¢t +1)|X(, 1), 0x]- (6)
i

Within the class of “statistical” or “stochastic” models, the most common example of (6) is a



(conditional) vector autoregression,
X1 =HX + 1744, (7)

where H is an S x S matrix of regression coefficients and {7j,} is an independent sequence of zero-
mean errors. Issues in the modeling of the 7},’s are similar to those discussed above concerning
the (s, t)’s. The crucial issue of modeling spatial structures clearly involves trade-offs between
the richness of the matrix H versus the level of independence among the elements of any given 7j;.
A standard default model is that the elements of each 7}, are spatially independent, zero-mean
Gaussian random variables, each having variance 072,. (In this case 0x = (H, 0727).)

To clarify the points raised in the previous paragraph, first note that if H is assumed to
be diagonal, then the entire formulation, based on (3) and (7), is a Bayesian seasonal time series
model, with autoregressive shocks and spatially dependent parameters. However, we may not have
confidence that spatial dependencies are explained sufficiently in such a model and so we might
change the model to one with non-diagonal covariance matrix for the shocks 7j,. Alternatively, a
non-diagonal H may be a natural choice. For example, we could write models which essentially
regress each element of X ++1 onto elements of X +, corresponding to some selection of neighboring
sites. (See Cressie, 1993, Section 6.3 for related discussion.) In cases where this strategy is
effective, the covariance matrix for the shocks 7}, could be modeled as diagonal, or nearly so.

Higher-order temporal dependencies can be readily modeled. For example, we can certainly

write down a k-step vector autoregression,

k
Xi1=) WX+ (8)
=1
Assumptions are as before with (7) and {H; : [ = 1,...,k} are S x S matrices of regression

coeflicients. This is a special case of a class of models known as the space-time autoregressive
moving-average (STARMA) models (e.g., see Cressie, 1993, p. 450). However, dimensionality of
the specification rapidly becomes a limiting consideration. As a partial solution to the dimension-
ality problem, additional modeling is possible. For example, in (8), one might introduce various

parameterizations of the matrices Hy. At one extreme, all the Hy’s might be assumed to be



diagonal, whose elements could be endowed with spatially dependent priors at the next stage.
Again, an interaction between the modeling of the Hj; and the covariance matrix of the noise
vectors {7j,} arises.

The Bayesian approach is natural for combining statistical and physical modeling. Opera-
tionally, we may imagine two basic strategies. The first is to employ flexible classes of “statistical”
models, such as the vector autoregressions discussed earlier, and then add scientific understanding
via the specification of the prior on parameters of the model. A second approach is to develop,
explicitly, physically based “mechanistic” specifications for use in analogs of (6). We will pursue
this latter direction elsewhere.

A final important comment involves “identifiability” issues. Depending on the modeling strate-
gies used in this third stage, the implied models might not be identifiable. Intuitively, the source
of the problem is that X (s,t) and 7(s,t) appear only through their sum in (3). Without special
sampling plans, parameters of the distributions of the X’s and «’s cannot be identified. In a
Bayesian analysis with proper probabilities on all quantities, identifiability issues do not prohibit
us from proceeding, though we should be careful in interpretating results for unidentified param-
eters. See Besag et al. (1995) for general discussion, and our Section 4 for amplification in an

example.

3.4 Fourth Stage: Priors on Parameters

The fourth stage is the specification of priors for all model parameters. Our problem is the
specification of [01,02,05|04], 64 is some collection of hyperparameters. It is convenient to assume
a partition, 04 = (04(1),604(2),04(3)), into hyperparameters associated with each stage, and a

conditional independence relation,

01,02, 03]04] = [01]04(1)][02]04(2)][03]04(3)]- 9)

Further, 64(3) would typically be partitioned as 04(3) = (64(x),04(8),04(X)), and coupled with a

further conditional independence assumption,

[03]64(3)] = [0,,104(11)][05104(5)1[0x |04(X)]. (10)



3.5 Fifth Stage: Hyperpriors

Finally, hyperparameter priors are specified. The standard assumption is that

[64] = [04(1)][64(2)][04(1)][04(5)][04(X)]. (11)

Often, the formulation is simplified by taking 04(1) and/or 84(2) to be either empty or known, so

that the corresponding terms on the right hand side of (11) drop out.

4 Example: Monthly Averaged Maximum Temperature

4.1 Data

We demonstrate some of the concepts in our Bayesian hierarchical space-time model with a
monthly averaged maximum temperature data set in a portion of the midwest “corn belt”. In
particular, 20 years (1974-1993) of monthly averaged temperatures at 131 stations from the United
States Historical Climatology Network data set (Easterling et al., 1995) are considered. The
locations of these stations are shown in Figure 1. We wish to predict monthly temperature (240
months) at 10 X 7 = 70 locations on a one degree latitude by one degree longitude grid covering
9 degrees of longitude and 6 degrees of latitude (see Figure 1). Note that there are missing data
at many observation sites. Of particular interest is the space-time dynamical structure of the

non-seasonal portion of the maximum temperature field.

4.1.1 Exploratory Analysis

In order to get a general understanding of the data, we have performed some simple exploratory
analyses. Figure 2 shows a contour plot derived from the temporal means for each observation
location. Note that there is a large-scale spatial trend from southwest to northeast. It appears
that a simple linear trend surface, including an intercept and a linear longitude and linear latitude
term, would be a reasonable large-scale spatial structure model for the data in this case.
Further examination of the data suggest that there is a significant annual cycle in temperature.

Figure 3 shows a contour map of the estimates of the “cosine” coefficient of the annual harmonic

10



for each site after removal of the site-specific mean shown in Figure 2. The annual harmonic for a
given site sy, is given by m(sg,t) = f(sg)cos(27t/12) + g(sp)sin(27t/12), where t is a month index
(1 to 240) and f(sy) and g(sj) are the “cosine” and “sine” coefficients, respectively. Apparently,
there is large-scale spatial structure in the “cosine” component, including a linear trend from
north to south. Similarly, Figure 4 shows a contour plot of the “sine” coefficients of the annual
harmonic. We detect a large-scale spatial linear trend here as well.

After removing the site-specific means and site-specific annual harmonic from the observa-
tions, Figure 5 shows a contour plot of the estimated site-specific autoregressive order 1 [AR(1)]
parameters. This plot suggests that there is spatial structure in the AR(1) parameters and that
some regions have increased temporal predictability (e.g., south-central Minnesota). Figure 6
shows a contour plot of the estimated standard deviation of AR(1) shocks at each site . We note
that there is spatial structure to the shocks (i.e., a linear trend from southwest to northeast) and

the associated variances exhibit heteroskedasticity.

4.2 Temperature Model

The model for maximum temperature follows the hierarchical framework outlined in Section 3.
In the subsections below, we develop each stage in turn.

4.2.1 First Stage: Measurement Process

We are given data Z(rj,t),j = 1,...,m at m = 131 spatial locations which may or may not be

at a grid location s;,i =1,...,S (S = 70). Consider the model,

Zt = K?t + Et (12)

where Z; is an m x 1 vector of observations, Y, isan S x 1 state vector, K is an m X S matrix that
maps the temperature values at grid locations to the observations, and €; is an m X 1 error vector
representing sub-grid scale processes and measurement error. In the case of the temperature
data, a plot of covariance as a function of distance (Figure 7, bottom panel) suggests that we can

assume the sub-grid spatial structure is white and that conditional on the true process Y (s,t),

11



the other observations within the .5 degree by .5 degree box surrounding s;, are i.i.d. Gaussian

2

2 (with 02 & 2). Thus, K is a matrix of zeros

random variables with mean Y (s;, t) and variance o
and ones, with a one in the (4, j)** position indicating that the i** grid location is associated with
the jt" observation location. No attempt is made to distinguish between sub-grid scale variance
and measurement error in this example. Although plausible, the model described here is rather
simple. We recognize that the choice of the appropriate model at this stage is a research problem

in itself, but the investigation of such a model is not our primary message in this paper.

4.2.2 Second Stage: Large- and Small-Scale Features

We now consider the model for the state process:

Y,=ji+M,+X,+7, (13)

where each term is an S X 1 vector, g are gridpoint means which are assumed to have spatial
structure, M ¢ is a gridpoint dependent seasonal term, X ¢+ is a dynamical process that accounts
for intra-seasonal space-time variability, and 4, is an error term. We assume that the Y’t’s are

conditionally Gaussian, such that:

[Yi|ji, My, X,0%] ~ Gau(fi+ M, + X;,02T) (14)

4.2.3 Third Stage: Spatial Structures and Dynamics

As discussed in Section 3.3, we assume that i, M ¢ and X ¢+ are mutually independent, conditional
on third-stage parameters. We then model fi as a conditionally specified Gaussian MRF with first-
order spatial dependence. That is, for grid locations k = 1,...,10;l =1,...,7, where k and [ are
indices corresponding to longitudes {98,97,...,89} and latitudes {39, 40, ...,45}, respectively:

p(k, D{n(i,5) = (5,5) # (k, D)}~ Gaul(po(k,1) + e {(p(k — 1,1) — po(k = 1,1)) (15)
+(u(k+1,0) = po(k+1,0)} + Bu{(pu(k, 1 = 1) -

po(k,t = 1)) + (u(k, L+1) = po(k, 1+ 1))}, 72),

12



where fig is the gridpoint specific MRF mean, a, and (3, are zonal (east-west) and meridional
(north-south) MRF spatial dependence parameters, respectively, and 7'5 is the homogeneous MRF
variance. It can be shown as a result of the Factorization Theorem (e.g., Cressie 1993, p.414)

that:

ﬁ|{ﬁ077-37 alhﬁu} ~ Gau(ﬁm (I - Cu)_lTi)a (16)

where C, is an S X .S matrix with four off-diagonals given by o, and 8, (e.g., Cressie 1993, p.434).
The seasonal component is modeled as an annual harmonic with amplitudes and phases that

vary spatially:
M, = f cos(wt) + § sin(wt) (17)

where w is specified to be 27/12 for the annual harmonic, and f and § are spatially varying
“cosine” and “sine” coefficients, respectively. We model the “cosine” and “sine” coefficients of

the annual harmonic given by (17) as simple spatial trends:

f(k,1) =[]+ f[2] long(k) + f[3] lat(l) (18)

g(k,l) = g[1]+ g[2] long(k) + g[3] lat(]) (19)

where f[1], f[2], f[3] and g[1], g[2], g[3] are independent Gaussian random variables:

f1] ~ Gau(f[1],63(1)) (20)
f2] ~ Gau(f[2],53(2)) (21)
fI8] ~ Gau(f[3],67[3]) (22)
gll] ~ Gau(g1],5;[1)) (23)
gl2] ~ Gau(j2],57[2)) (24)
gl3] ~ Gau(g[3],5,[3]), (25)

where the parameters are fixed and specified as in Table 2.

13



The space-time dynamic term is modeled as a vector autoregressive (VAR) process:
Xt == HXt—l + ﬁt (26)

where H is an S x S parameter matrix, and 7}, is the VAR noise term. With the large spatial
dimensions typical of climatological problems, even this simple VAR model must be further sim-

plified in practice. We consider the “nearest neighbor” VAR model for the parameter matrix.

That is,

X((k,0),t) = a(k,l) X((k,0),t—1)+bX((k+1,0),t—1) (27)
e X((ky0+1),t—1)+d X((k—1,1),t—1)

+e X((k,l—=1),t—1)+n((k,1),1).

This is a form of the STARMA models described by Cressie (1993, p.450). Note that here the
autoregressive parameter for the grid location under consideration, a(k,[), is allowed to vary spa-
tially, but the nearest neighbor parameters do not vary spatially. It is anticipated that estimates
of b,¢c,d, and e will have implications related to the dynamics of the climatological system. To
simplify the model further, we assume that {n((k,l),t)} is spatial white noise. This assumption
may be unrealistic (because it assumes no instantaneous spatial interaction), but it is hoped that,
through marginalization, the spatial dependence in the {@} parameters, along with the lagged
nearest neighbor structure, will provide suitable spatial dependence in the X process. In addition,

large-scale instantaneous spatial interaction is captured in the i and M ¢+ terms. Thus, we assume:
— — 2 — 2
Xil{Xi-1,H,0,} ~ Gau(HX;1,0,1), (28)

where H is a diagonal matrix with four off-diagonals given by the parameters b, ¢, d, e, and a main
diagonal containing the vector @. For edge sites, some of the off-diagonals have corresponding
Z€roS.

A “diagonal” VAR model (e.g., b, c,d, e equal to zero) was also considered, as well as a “spa-

-

tially dependent” nearest neighbor VAR model (e.g., B, ¢, 3, é are allowed to vary spatially). The

14



former does not capture as much spatial structure in the X field as the model described here.
Furthermore, we feel the latter model is overparameterized and it is very sensitive to the initial

conditions and the associated Gibbs sampler has difficulty converging.

4.2.4 Fourth Stage: Priors on Parameters

As indicated in Section 3.4, we partition the fourth stage priors and assume conditional indepen-
dence.
We represent the mean {fiy} of the gridpoint mean MRF given by (16) as a simple spatial

trend:

no(k,1) = polL] + po[2] long(k) + 1o[3] lat (1) (29)

where long(k) and lat(l) are the longitude and latitude of the (k,l)** gridpoint, respectively,
and the regression coefficients pg[1], 1o[2], o[3] are specified to be independent Gaussian random

variables:

poll] ~ Gau(fio[1], &y, [1]) (30)
pol2] ~ Gau(fio[2],57,[2]) (31)
pol8] ~  Gau(fio[3], 57, [3]), (32)

where the parameters are fixed and specified as in Table 2.
We let the spatial dependence parameters oy, 3, in (15) be independent Gaussian random

variables, but constrain them to ensure positive-definiteness of the marginal covariance matrices:

ay o~ Gau(dp,&gu) (33)

ﬂu ~ Gau(ﬁ”,égﬂ), (34)

with fixed and specified parameters as in Table 2.

We represent the spatially varying autoregressive parameters @, given by (27), as a condition-

15



ally specified Gaussian MRF with first-order spatial dependence:

a(k,[){a(i,j) : (i,5) # (k, 1)} ~ Gau(ao(k,l) + aa{(a(k —1,1) —ao(k —1,1)) (35)
+(a(k + 1al) - aO(k + 1al))} + ﬁa{(a(kal - 1)

—ag(k,l — 1)) + (a(k,l + 1) — ag(k,l + 1))}, 72)

where ag is the MRF mean, o, and (3, are the zonal and meridional MRF spatial dependence
parameters, and 72 is the homogeneous variance. The distributions of these parameters are
specified in the fifth stage.

We also assume that the nearest neighbor autoregressive parameters are independent Gaussian

random variables:

b~ Gau(l;o,égo) (36)
c~ Gau(é,62) (37)
d~ Gau(cfo,&flo) (38)
e~ Gau(é,52), (39)

with fixed and specified parameters as in Table 2.

For the variances specified in stages one through three, we assume independence and use the

conjugate priors:

o; ~ IG(Ge7o) (40)
03 ~ I1G(Gy,7y) (41)
0%~ IG(dy ) (42)
7-5 ~ I1G(Gu, ), (43)

where IG refers to the inverse Gamma distribution, and the parameters are fixed and specified

as in Table 2.
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4.2.5 Fifth Stage: Hyperpriors

As suggested by the exploratory analysis (see Figure 5), we assume that the MRF mean for the
spatially varying autoregressive process a@ given by (35) has a large-scale linear spatial trend,
decreasing from the northwest to the southeast. Thus, we assume that @ has a simple spatial

trend structure:

ao(k,1) = a[L] + ao[2] long(k) + aof3] lat (1), (44)

where ag[1], ap[2], a¢[3] are independent Gaussian random variables:

aoll] ~ Gau(do[1],55,[1]) (45)
apl2] ~ Gau(d[2],57,[2]) (46)
ao3] ~ Gau(do[3],55,[3]), (47)

with fixed and specified parameters as in Table 2. Furthermore, we let the spatial dependence
parameters ag, (3, in (35) be independent Gaussian random variables, but constrain them to ensure

positive-definiteness of the marginal covariance matrices:

aq ~ Gau(d,,52) (48)

Ba ~ Gau(/éa,a',[%ﬂ), (49)

with fixed and specified parameters as in Table 2. Finally, we assume that the variance parameter

72 in (35) is independent of o, and (3, and use the inverse Gamma conjugate prior:
7a ~ 1G(qa, Fa), (50)
where the parameters are fixed and suitably specified as in Table 2.

4.3 Bayesian Estimation: Gibbs Sampler

Markov chain Monte Carlo (MCMC) methods have been used in stochastic simulation for over

40 years (e.g., Metropolis et al. 1953, Hastings 1970). In particular, the Gibbs sampler approach
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to MCMC has been used extensively in the statistics literature since the pioneering work by
Geman and Geman (1984). For a general overview of these methods see Gilks et al. (1996).
We have chosen a Gibbs sampler to allow us to determine the relevant posterior distributions
for the hierarchical model of temperature given in Section 4.2. Since we have chosen Gaussian
distributions with conjugate priors, the derivation and implementation of the full conditional
distributions needed for the Gibbs sampler are, with one exception, quite straightforward. (See
the Appendix for the derivations.) The exception concerns the full conditional distributions for
each of the MRF spatial dependence parameters (i.e., o, By, @a,3a). As an example, the full

conditional distribution for c, (see Appendix) is:

[aul : ] & [ﬁ|ﬁ07aﬂ7ﬂua7ﬁ][au] (51)
* ool ) (= G - A +
(o — du)z(&z)_l]}
< Ao,

where o, is on two of the four diagonals of C,. The presence of c in the determinant term
makes this a difficult conditional distribution from which to sample. In order to proceed, we
employ a Metropolis-Hastings step in the Gibbs sampler [e.g., see Gilks 1996]. First, we note
that it is relatively easy to sample from the “pseudo full conditional”, which makes use of the

pseudolikelihood approach to classical MRF estimation [e.g., Cressie 1993 pp. 461-463 ]. That is,

[aul ' ]pseud_o & H[N(Si)|ﬂ(sk)ak#iHLOaO‘p,ﬁpaTi][au] (52)
=1
L B (ay).

Then, the Metropolis-Hastings step for generating the k** sample from the full conditional distri-

bution of «, is performed as follows:

e Choose a starting value for o, (0) (e.g., see Section 4.3.1),

e Sample ay(k) from h*(ay),
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e Sample U from U(0,1),

. h(a, (k))h* (ay, (k—
o If U < minll, h%a:Ek)—)l))(h*u(Ex”(;;;]’ then accept o, (k); else, set oy, (k) = a,(k —1).

In practice, this step is relatively slow because of the evaluation of the determinant in (51). How-
ever, by utilizing sparse matrix technology in the implementation, significant speed improvements

can be realized.

4.3.1 Assessing the Gibbs Sampler

While theory implies that the Markov chain is guaranteed to converge to the appropriate sta-
tionary distribution, implementation issues arise in practice. One must make choices related to
influence of starting values; how long to run the chain before convergence; and how best to mon-
itor the chain and perform the desired estimation. These issues are still the focus of ongoing
research (eg., see Gilks et al. 1996). We have taken a rather simple approach in our analysis.
Initially, we ran three pilot simulations (4000 iterations each) with different starting values
(one representative of prior means, and the others widely dispersed within each parameter’s prior
distribution). In addition to a visual assessment of convergence, we examined the Gelman and
Rubin (1992) convergence monitor (R, which should be close to one for convergence) for the model
parameters listed in Table 2. Visual assessment of the three pilot simulations suggested that all
parameters had “converged” by 1500 iterations. Thus, we discarded the first 1500 iterations and
calculated the Gelman and Rubin monitor with the remaining 2500 iterates. As indicated in
Table 2, VR values for all parameters suggested convergence at 500 iterations (beyond the 1500
burn-in), with monitor values below 1.03 in all cases. We then ran a single long (8000 iterations)
chain (based on the prior mean starting value set) and conservatively discarded the 2000 iteration
“burn in” period. Posterior means of all quantities were estimated by the corresponding sample
means from the long run (neglecting the burn-in period). Due to the correlation of MCMC
samples, we estimated the Monte Carlo standard errors by the “batch means” approach described
in Roberts (1996). The batch size was determined from examination of lag autocorrelation plots
of several parameters as obtained from the pilot samples. In particular, all parameters have

autocorrelations that dropped to insignificance by lag 50. Consequently, we used batch sizes of 50
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from the remaining 6000 Gibbs iterations. Although we are not guaranteed that the batch means
are uncorrelated with this batch size, we believe it to be a conservative size for most parameters in
our model. The Monte Carlo parameter estimates from this simulation, as well as the associated
Monte Carlo standard errors, are given in Table 2.

From a modeling perspective, the results from the Gibbs sampling and the rate of conver-
gence were very encouraging in general. Note that the large-scale spatial trend parameters
{flé], glé], wpli]; ¢ = 1,...,3} do not show a large difference between the prior mean and the
posterior mean. The prior means and variances were estimated by regression in the exploratory
phase. The lack of Bayesian learning suggests that the trend terms were well estimated in the
ad hoc exploratory analysis. In contrast, note that the posterior means of the variance compo-

nents o2 and o2 are extremely different from their prior counterparts. While this may indicate

v n
Bayesian “learning,” we must also recall our earlier discussion regarding identifiability. From a
classical perspective, these variance components are not identifiable in our model. However, prior
specifications on these variance components permits a Bayesian analysis. In our case, the prior
means given to these components were based on exploratory data analysis, and our confidence in
them is not as great as is suggested by their relatively narrow prior variances. Furthermore, sen-
sitivity analysis with different priors suggest that the model tends to put more variance in the U,QY
component, but that the remaining parameters are not greatly sensitive to these changes. In any
case, we should not try to interpret these parameters separately, though their sum is meaningful.
Note that the identifiability issue could have been handled by other methods (e.g., deletion of
one of the two components of variance, reparameterization). We choose to keep the model in
the form presented here to show the flexibility available in error modeling. For example, in some

meteorological examples, it is natural to model “regimes” by constructing a mixture model for

one of the two components of variance.

4.3.2 Results

From the posterior parameter estimates, we can examine some climatological issues. For instance,
the MRF and VAR parameters provide useful information. The lagged nearest neighbor parame-

ters {b,c,d,e} (36)-(39) suggest that the “upwind” (westward) location (i.e., d) is more influential
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Table 2: Gibbs Sampler Results

MCMC

Model Prior Prior Posterior Convergence
Parameter Mean Std. Dev. Mean (Std. Error) Monitor (R)
fl1] 17 24 16.63 (.037) 1.000
f12] .10 .032 .097 (.0004) 1.001
f[3] -.75 .032 -.76 (.0006) 1.001
g[1] 2.0 71 2.01 (.0099) 1.002
g[2] 025 .01 .024 (.0001) 1.002
93] -.35 .032 -.34 (.0004) .999
“mean(p)” 59.7

w[1] 111 3.74 111.0 (.08) 1.001
(2] -.27 .05 -.27 (.0008) 1.005
©[3] -1.8 .16 -1.82 (.002) 1.000
ay 15 2 .11 (.003) 1.000
By 15 2 .022 (.005) 1.005
T 1 .32 .66 (.003) 1.001
b .0 .28 .096 (.0007) 1.007
c .08 .28 .14 (.0007) 1.001
d 12 .28 .20 (.0006) 1.004
e .07 .28 .15 (.0009) 1.000
o? 2 .32 2.4 (.0005) 1.000
o2 8 71 11.8 (.02) 1.019
O'% 23 2.6 8.9 (.02) 1.023
“mean(a)” .22

a0[1] -2.0 1 -2.10 (.013) 1.002
a0[2] -.015 .084 -.019 (.0001) 1.001
a0[3] .020 .0084 .014 (.0003) 1.002
oy 15 2 .14 (.006) 1.003
Ba 15 2 .14 (.006) 1.003
2 .005 .01 .0017 (.0002) 1.022
X|[(97,44),10] 1.4 (.078) 1.005
X[(96,41),90] .3 (.032) 1.008
X[(94,42),170] 1.4 (.078) 1.003
Y'[(97,41),50] 24.8 (.013) 1.000
Y'[(92,45),130] 54.3 (.11) 1.007
Y'[(91,42),210] 84.3 (.11) 1.002
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than the “downwind” (eastward) location (i.e., b), in agreement with the prevailing westerly (i.e.,
west to east) propagation of midlatitude weather systems. In contrast, the northward (i.e., c)
and southward (i.e., e) locations are equally important, but not as “influential” as location d.
Thus, although the zonal (east-west) upwind component is most influential (as expected), there
are significant contributions from north-south locations, suggesting that on monthly time scales
there are meridionally propagating processes that are influential. An interesting extension to the
model presented here could examine if there is seasonal and/or interannual variation in these
parameters as well.

The MRF spatial dependence parameters can also be interpreted from a climatological per-
spective. After removal of the large-scale spatial trend, o, (33) is larger than 3, (34), suggesting
the added importance of zonal (east-west) disturbances in the mean process. However, the a,
(48) and (3, (49) parameter estimates and posterior distributions are very similar (see Figure 8),
suggesting that the zonal and meridional influences on spatial variability of the @ process (35) are
both important.

It is also instructive to examine the predicted linear trend surfaces in the model. Figure 9 shows
the trend surface derived from the relevant posterior means for the mean maximum temperature
(29), the annual harmonic cosine (18) and sine (19) terms, and the same-site autoregressive
parameters a@g (44). Certainly, we could interpret the @ trend surface from a climatological
perspective. The northwest to southeast trend is interesting. It may be that this is indicative of
regional predictability differences; that is, the northwest region has more persistence in monthly
temperature (i.e., next month’s temperature deviation from climatology is likely to be similar to
this month’s), so monthly forecasts in that area are likely to have more skill. Another possible
explanation, although less likely, is that since the exploratory analysis suggests that the AR(1)
noise is not homogeneous [Figure 6], it could be that the model has added the spatial trend in the
a parameters to compensate for the assumption of homogeneous variance. It is also interesting
to examine the annual harmonic amplitude (amp(s) = [f(s)? + g(s)?]"®) and phase (phs(s) =
arctan[—g(s)/f(s)]), as shown in Figure 10. The annual cycle amplitude and phase increase

towards the north-northwest, although the phase difference is inconsequential (with the maximum

difference accounting for a phase difference of less than two days). As expected, the phase peak
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occurs in July (i.e., cos(27t/12 + phs(s)),t = 0,...,11 is a maximum at ¢t = 6, corresponding
to a maximum in July, given the estimated phs(s)). We also expect that the amplitude should
increase as we move towards the northwest, as the winters are colder in northwest corner of the
grid than the southeast corner, but regional differences between summer maximum temperature
are not as large.

Ultimately, we are interested in the prediction of the X (27) and Y (13) processes. First,
consider the posterior samples from the Gibbs iteration for the X process at locations that have
observations within the gridbox, and locations that did not have the benefit of observations
(Figure 11). As expected, the posterior densities of X are “wider” at locations where no data are
present. A similar difference between observation and non-observation locations is evident in the
samples from the Y process (not shown). It is also instructive to examine the time variation of
the predicted X and Y processes at selected sites. Figure 13 shows time-series plots at two sites,
one that is directly influenced by data ([lon,lat] = [94,43]), and one that is not ([94,42]). The
model’s performance on the Y process is difficult to judge since most of the variance is explained
by the annual harmonic. However, we note that there is a marked difference between the series
influenced by observations and that which is not influenced directly by observations, at least as
they relate to cold season variability. The non-observation site time series fails to capture the
increased variability that is present in the winter season in the observation influenced series. In
fact, this illustrates that we made a poor modeling assumption. It is well-known that maximum
temperatures often show more variability in the winter than in the summer (especially in the
central regions of continents), thus implying a seasonal structure to the variance. In retrospect,
we should have included such a cyclo-stationary variance term in our model (i.e., let y(s,t) vary
seasonally). Such a formulation is easily handled by our hierarchical structure.

Typically, one is interested in the dynamic processes contained in deviations from the “average
climate” (i.e., anomalies), which is what we are modeling in the X process. The first thing to note
about the time series of the X process in Figure 13, is that there is a remarkable similarity in the
time evolution between these sites. Although not shown, this similarity extends throughout most
of the prediction domain. We believe this time-dynamic similarity is physical, since the monthly

time-scale weather features should exhibit a fair degree of spatial homogeneity. However, it is
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certainly the case that the prediction of the X process at the “non-observation” location shows
less variance than the time series at “observation” locations. The smaller variance in the predictor
at non-observation sites can be explained as follows. With little or no data in the gridbox, the
posterior mean (which is the predictor) is “shrunk” more towards the prior mean than if there
were a lot of data, in which case the more variable sample mean tends to dominate. It is also
possible that some of these differences may be attributable to the assumption that there is no
spatial structure in the VAR variance. As shown in Figure 6, there is likely to be coherent spatial
structure in this variance.

To further demonstrate the usefulness of this modeling exercise for examining climatological
issues, we focus on the space-time evolution of the X process. In particular, we consider maps of
the posterior means of the X process in June for the years 1988, 1990, and 1993 (Figure 13) and
for the summer season (June, July, August) of 1988 (Figure 14). The years (1988, 1990, and 1993)
were chosen because the region of interest was known to have experienced warm/drought, normal,
and cool/wet conditions during these summers, respectively. The summer months were chosen
to show the space-time dynamic evolution during one of the extreme (hot) years. Figures 13 and
14 show smoothed posterior mean maps for these periods. The model has correctly represented
the “known” weather during the extreme years (Figure 13) and captured the space-time dynamic

evolution (Figure 14).

5 Discussion

The hierarchical approach described here offers a flexible approach to modeling a large class of
environmental space-time processes. These models are not the most general and many extensions
and modifications could be explored as discussed previously. In particular, we have only scratched
the surface as far as the space-time dynamic process X is concerned. There are many additional
parameterizations that could be investigated. For instance, we could allow time-varying param-
eters in this process along with physically based parameterizations. These approaches are being
considered and will be reported elsewhere. As is always the case, the model must be tailored to the

problem at hand. For instance, if our goal is increased climatological understanding (as illustrated
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above), then the model discussed here is useful. Similarly, if we are interested in predicting at a
future time, our approach is useful. However, if we are trying to predict the X process spatially
at locations for which we have never had observations, our lagged nearest neighbor implemen-
tation may need to be enhanced. Fortunately, within the hierarchical Bayesian framework, the
exploration of various complex space-time models is quite straightforward, and shows promise in

space-time environmental problems.
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Appendix: Derivation of Full Conditional Distributions

This section outlines the derivation of the full conditional distributions used in the Gibbs sampler
for the example discussed in Section 4. In general, full conditional distributions are determined
by writing the joint distribution of all random quantities divided by the appropriate normalizing
constant. In hierarchical models, this process is typically simplified due to the various conditional
independence assumptions that are often made. In particular, all components of the full joint
distribution that do not functionally depend on the quantity “cancel” from the numerator and
denominator of the full conditional distribution. The following derivations begin after these
simplifications have been considered.

Note that the Gaussian assumptions in our model implementation lead to straightforward
derivation of the full conditional distributions, except in one case (see Section 6.8). Although
there are several ways to approach such derivations, we repeatedly use a “completing the squares”

approach. For example, the full conditional distribution for some parameter vector 8 is
1 /
0] ] exp{—§[0 A6 —2B4]},
which, after completing the square, gives
0| ~ Gau(A'B,A1Y).

The generic notation [W | -] and W | - is used to represent the conditional distribution of W

given all other random quantities.

6.1 [V
Recall from Section 4.2.1:
[Z:|K, Y02 ~ Gau(KY,02), (A. 1)
and from Eqn. 14:
[?tlﬁ,MhX—t,Ui] ~ Gau(ﬁ+]\_’4t+)_ft,ail). (A 2)
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Then,

Vil -] x [ZiK, V4,02V :id, M, X1, 07)

1 = - = —
x exp{— 52 (Z: —KY:)'(Z: —KY )} exp{— 5

x (Vi — [ﬁ+1‘7—’t+5{t])}

o cxp{——[(Y [—K K + —I]Yt) —2( 2Z K+ — [,u, + M, + Xt] )Yt)]}

’Y ’Y

fort=1,...,T. Thus,

1 =~ . _ S
Ug(Yt — [#+Mt+Xt])l
3

- 1 1.

% e

1 1.
(;K'K + 0—21) Y,
e v

6.2 [X,-]

Recall the Markovian assumption (Eqn. 6), as well as Eqn. 14. Then,
Ytlﬁ,Mt,Xt,U_Zy ~ Gau(ﬁ, + Mt + X.t,O':ZYI),

and Eqn. 20 yields,
Xt|Xt_1,H,J;‘; ~ GCLU(HX-t_l,O'%]I).

Then, fort=1,..., 7 —1,

[Xt|] X [?t|ﬁ7MmXm03][Xt+1|jt7HvUZ][Xvﬂthfl,H

cr;‘;]

T RS
o eXP{—g[ﬁ(Yt—[N+Mt+Xt])'(Yt—[N+Mt+Xt])+

Y

1 - - - S

;(-Xt - H-Xt—l)l(_Xt —HX,; )+
n

1

P(XH—I —HX,)' (X1 — HX,)]}
n
1
x cxp{——[X ( 2I + —H H+ —I)Xt — 2(—(Yt
7 77 T 7y
Xt+1H+ Xt 1Hl) t]}a
oy

3m|'_‘
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where we need the initial condition X 0. Thus,

- 1 1 1 _ 1 - i — 1 o 1 o \
X ~ Gau[(o—zl—i— ;H'H—}— FI) 1(0_2(Yt_”_Mt)l+§Xt+lH+ ;Xt_lH')',
¥ n n ¥ n n
1 1_, 1 .4 .
(—ZI—I- —ZHH—l-—,)I) ] (A. 8)
o5 o; oy
Similarly, for t = T,
[X.Tl ] 0.8 [YTlﬂ,MT,X_T,U,?;][X'Tle,l,H,UZ], (A 9)
which, as above, leads to
- 1 1 -1 1 = - = ’ 1 o N\
XTl . ~ GCL’U,[(U—21+ FI) (U—Z(YT—[L—MT) +?XT_1H) s
¥ n ¥ n
(i1+ iI)—l] (A. 10)
o2 o3 ' '

Similarly, if X0|[J,XO, Yx, ~ Gau(fix,,Ex,), the full conditional distribution for X, is given by

[Xol-] o [X:1|Xo,H.o}][Xolfix,. Bx,] (A. 11)
1 - Y RO 1 = . P .
BN exp{—?(XOH'HXO —2X, HXo) - 5(Xo - Bx,) Sx (X0 — fix,)}
n
which, as above, leads to
o 1 . 1 o
Xol+ ~ Gaul[(HH+I) (S X HA iy, Tx,)
n n
1 :
(SHH+X)™. (A. 12)
Tn
63 [dl-]
Using the distributions in Eqns. 14 and 16, we can derive
T
-] o [iblig, 7o Bl [ [V ilid, My, X1, 02) (A. 13)
t=1
1 .. .., L.
o exp{—5— (i — fy) (T - Cu)(fi — fin)}
Th
T
X CXP{—209 Z( t—f—M;— X)) (Yi—j—M;—X;)}
Y t=1
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T
1., 1 T_. . 1 . . 1 - _ = .

x exp{—Z[i" (51— Cp) + SDji —2(Sfg(I-Cu) + = > (Vi — M, — X,))jil}.
2 Ty Ty Tu 7y =1

Thus,

T
R 1 T_._, 1, 1 _ _ o
Al o~ GW[(T—Z(I—CM)+J—21) I(T—ZHS(I—CMH'U—ZZ(Yt—Mt—Xt)')',
Y

7 ¥ 2 t=1
1 T_._,
(%(I -Cu)+ J—%I) - (A. 14)
6.4 [fig| -] and [y | -]
Recall from Eqn. 21 that,
po (k1) = po[1] + po[2] long(k) + po[3] lat (), (A. 15)

where long(k) and lat(l) are the longitude and latitude of the (k,l)th gridpoint, respectively, and the
regression coefficients ug[1], po [2], po[3] are specified to be independent Gaussian random variables as shown

in Eqns. 22-24. For all k£ and [ defined for our model, we can write

e = (1 long lgt)(/io[l]’ pol2], pol3])'

= P/"’OL? (A 16)

where P is the S x 3 linear trend “design” matrix, and o, = (po[l], #0[2], w0o[3])’ is the linear trend

parameter vector. Then, from independence and Eqns. 22 - 24,

“OLlﬂOLﬂi)Mo ~ Gau(ﬁ'OLaiﬂo)? (A 17)

where 3, is a 3 x 3 diagonal matrix with 6% [1], 7,[2], and 62 [3] on the main diagonal. Then, recalling

Eqn. 16,

[Borl -] o [ﬁlﬁovawﬁmTZ][NOLmou2#0] (A. 18)
1 . . . , 1 N ~_ .
x exp{——sz (A —Ppy) (I- Cu)(E—Ppg)} eXP{_Q(NoL - IJ’OL)IEMOl (Kor — For)}
o

1 1 . . - 1. , NP
x OXP{_E[IJ’:)L(T_ZPl(I - CL)P + EHOI)H’OL - 2(7__2#1(1 —CL)P + IJ’OLE;AQI)/J’OL]}a
7 7
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and,

1 ) . ~ o ~
Horl - ~ Gau[(T—ZP'(I—CM)P—i—E“) ( oNI(I Cu)P‘H"oLEuo) ( Pl(I CM)P+2
o

qu . (A. 19)

Note that the derivation of the full conditional distribution for @, is analogous to that for fi,, as

presented here.

6.5 [f|-]and [g] ]

From Eqn. 25 and from the definition of the linear “design” matrix P (Equ. A.16) we can write:
f =Pf;, (A. 20)
where fr, = (f[1], f[2], f[3])’. Also, from Eqns. 27-29,
fLlfL, 37 ~ Gau(fr, X;), (A. 21)

where f;, = (f[1], f[2], f[3]) and 3¢ is a 3 by 3 diagonal matrix with &jz,[l], &?[2], and &;Zc [3] on the main
diagonal. Then,

T
o] -] o [flfe, S4] [V elid, X+, 7.6, 03) (A. 22)

t=1

1 - ;
x exp{—g(fL—fL)'E ( Z[Yt (fi + Pfy coswt + Pgrsinwt + X;)]

’Ytl

x[l_}t — (i + PfL coswt + Pgrsinwt + Xt)]}

x exp{——f' ~; _ZZ coswt)’P'P)fy, —2(fL2 +

03 4
1 X
—22 — (f+Pgy smwt+Xt)]'Pcoswt L]},
'Y t=1
and,
1 Z
fro|- ~ Gau[(z + —Z(coswt)zP P)! (fLE + —Z[Yt (i + Pgpsinwt + X,)]'P coswt)’,
7y =1 7y =1
N 1 &
(2;1 +—= Z(cos wt)’P'P) 1. (A. 23)
o2 .
7 t=1
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Similarly,

gr|- ~ Gau[(E + = Z(smwt ‘P'P)” (g’Lf);l + — Z[Yt (ji + Pfy coswt + X;)]'P sinwt)’,

‘Ytl ‘Ytl

(=, + —Z(smwt) P'P) Y, (A. 24)
Ty t=1

where gz = (g[1], ¢[2], ¢[3])" and
nggLaig ~ Gau(gL,ig). (A. 25)

6.6 [d-]
From the lagged-nearest neighbor VAR structure (Eqn. 19), we can write the following decomposition:
HX, , = diag(@)X,+H.X, (A. 26)

= diag(X, 1)@ +H, X, ,

= X;_1a+ HaXt—la

where H, is the H matrix with the main diagonal (Which is @) replaced by zeros, and X;_; = diag()z't_l).
Then, using Eqns. 20 and 33,

T
[[i | ) ] o8 H[thxt—laHaU%][&|60aaaaﬁa572] (A 27)
t=1
T
x exp{—=— Z —X; 1@ -H, X, ) (X, —X;1@d—H,X, 1)}
0-77 t=1
1 o L

x cxp{—z—Z d—ay)(I—C,)(@—do)}

@ 1 »
x eXp{—— ’(—th X1+ 5 (1= Ca))d -
T =1 Ta
1 T
20— D (X~ Ho Xy 1) X1 + - ao(I— C.)la]},

N t=1

and

i)~ Gal( LY X X, o+ 5(1-C. ))*W—Z(xt H X, 1)/ X0+ —ao(I-C,)

"Itl th Ta
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(2 th Koo+ > (1= Ca)) '], (A. 28)

N t=1 a

6.7 [b|.]’[c|-],[d|-],[e|-]

From the lagged nearest neighbor structure (Eqn. 19) we can write the decomposition:
- b S
HX, , =bX, ; +HyX; 4, (A. 29)

where H is the H matrix with the diagonal corresponding to the b coefficient replaced by zeros, and
b -

X, ; = JpXi-1, where Jp is an S x § matrix with ones along the diagonal corresponding to the b
coefficient in H, and with zeros elsewhere. The exact form of this matrix is a function of the chosen

vectorization and the method for handling edge effects. Then, using Eqns. 20 and 34,

T
bl-] o« JJIXeX.1, H,02]blbo, 57 (A. 30)
t=1
X exp E(Xt bR —HX, (X —bX,_ —HX, )
& t=1
x cxp{— (b —by)?}
gy T _b b
x exp{——[b( S X X+ 9)b 2b(— Z(Xt H, X, 1) X,_, + =)},
Tn =1 Tn =1 Tp
and
1 T 1 T b b
bl ~ Gau[(—zz +— 1Xt 1+ ~9)_ 22:(Xt Hbthl)lXt,1+~_02)a
Tn 1=1 T =1 T
1 1
(;Z X1+ =5)7 (A. 31)
N ¢=1 b
Note that analogous distributions are obtained for ¢,d, and e.
6.8 [oy, |- LBul-Llea| Ls[Bal-]
From Eqns. 16 and 38, and with independence assumptions on the hyperparameters,
[aul : ] X [ﬁ’lﬁmawﬂuaTi][au|dua&iu] (A. 32)
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1

where «, is on two of the four diagonals of C,. The presence of «, in the determinant term makes
this a difficult conditional distribution from which to sample. In order to proceed, consider the “pseudo
conditional distribution”, which makes use of the pseudolikelihood approach to classical MRF' estimation
[e.g., Cressie 1993 pp. 461-463 |. That is,

[aM| ) ]pseudo X H[H(si)lu(sk)ak5£i;Ho’alﬂﬁlﬁﬂ-ﬁ][alﬁldu’&i“] (A 33)
x exp{—#[z > [n(k, 1) = po (k1) — ep{p(k = 1,1) = po (k — 1,1)
ook l
+ p(k+1,1) —po(k+ 1,0} = Bu{p(k, 1 - 1)

— o (k1 = 1) + pa(k, 1+ 1) — o (K, 1+ 1))}

1 .
X exp{—2&2 (au—au)z}

1 1 . . 1 .
x exp{_E[ai(T_g ZZ{M(k - lal) - MO(k - 17l) +Ij’(k + Ll) - MO(k+ lal)}z + 52 )
I T ®n

— 20, ( + D0 D Ak = 1,1) = pro(k = 1,0) + pk+ 1,0) = po (ke + 1,1)}
Qp k l

X [M(k"’l) - MO(kvl) - ﬂ”{,u(k,l - 1) - Ho(kvl - 1) + :“(kvl + 1) - Ho(kal + 1)}])]}

Then,

1 . : . : : , 1 .

Spernae |+~ Ganl(—5 S ulk = 1,0) = ol = L) sl + 1,1) = o (4 LDY 4 =)
L T “n

167

2# + ZZ{M(k - 1*l) _NO(k - 1*l) +N(k + 1*” _MO(I{; + 17l)}
p B
X (k1) = po (k1) = Bud{p(k, 1 = 1) — po (kL — 1) + p(k, L+ 1) — po (K, 1+ 1)}]),

(S0 Sk — 1.0) = ol = 10) 4 s+ 1.0) = proCl 4+ LDY + =)
“k 1 a,

X

o

(A. 34)

We use samples from [, ..., | - | to obtain samples from [a, | - | in a Metropolis-Hastings sampling step

within the Gibbs sampler as discussed in Section 4.3.

The full conditional distribution [3, | - ] is analogous to that above, as are the full conditional distri-
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butions for «, and 3.

6.9 [o?]]

From the discussion in Section 4.2.1 and Eqn. 40,

T
0211 o« [[IZ:K. ¥+, 0207 (Ge, 7] (A. 35)
t=1
1 1 <
: (02)%" o557 Y (Z:—KY,)(Z, - KY,)}
€ 2 € t=1
1 1

N 1
X _ ~—de — -
TG (it i)

T
1 1 .2 o L, o S
* oy Mgl X;(Zt ~KY,)'(Z, - KY )]},
€ € € t=

and,
2 IG(mT +q [1 . ET:(Z KY,)(Z;—KY )™
Oc | = ™~ B | T 5 - - -
€ 2 q e 2 2\ t t t t
(A. 36)
2
6.10 [02]-]
From Eqns. 14 and 41,
T
[O',?)', | ' ] x H[YtlﬁvMtvxtvaz][a'?;ld’)’vf’)’] (A' 37)
t=1
1 1.2 e Lo o
* GyFam olggly 4 L V- - M- Xy
(U‘y) - v t=1

x(Yi—f—M;—X)]},

and
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o
x(?t—ﬁ—]\_)[ X)] b. (A. 38)
6.11 [02] ]
From Eqns. 20 and 40,
T
o 11 o JTIXH, Xoo1,00][00 G, 7] (A. 39)
t=1
1 R
X Err exp{ —+ Y (X —-HX,)(X, -HX, 1]},
(o’ﬁ)z +dy 77 o
and
2 S 1 d Y Y l -1
Ur/ ~ IG( +q,7 [~ §Z(Xt_HXt—1) (Xt—HXt_l)] )
t=1
(A. 40)
6.12 [77 [ L[77 ] -]
From Eqns. 16 and 43, we obtain
(72 1-1 o [Alfg, By, ][ | Qs 7] (A. 41)
1 .
p{— 5 (A — fig) (T— Cp)(fi — fio)}
(Tu M
1 1 1
F—dn _
F(qu) Ty (Tﬁ)quﬂ exp{ 7:;["5}
e gl (7 — i) (T = CL) (i~ )]}
(12)% Sttt P 2727, A= Fio) ( w) W= Bo)ls
and
2 S 1 I
Tl o~ IG5 +qm[ +5 (u fig)' (T = Cu) (i = )] 7)- (A. 42)
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Analogously,

2~ IG(%HL,%+%((i—a‘o)’(I—Ca)(a‘—ao)]—l). (A. 43)
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Prediction Grid (+) and Observation Locations (*)
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Figure 1: Prediction grid and observation locations
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Figure 2: Contour plot of estimated means of monthly maximum temperature at observations
sites (Contour interval = 2 deg F)
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Annual Harmonic Cosine Coefficients
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Figure 3: Contour plot of estimated cosine component of annual harmonic, estimated from devi-
ations of site-specific temperature means (Contour interval = 1)

Annual Harmonic Sine Coefficients
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Figure 4: Contour plot of sine component of annual harmonic, estimated from deviations of
site-specific temperature means (Contour interval = 0.5)
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AR(1) Parameter Estimates
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Figure 5: Contour plot of autoregressive order 1 parameters, estimated from deviations from
site-specific temperature means and annual harmonics (Contour interval = 0.025)

AR(1) Shocks: Standard Deviation
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Figure 6: Contour plot of autoregressive order 1 shock standard deviations, estimated from devia-
tions from site-specific temperature means and annual harmonics (Contour interval = 0.2 (deg F')
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Maximum Monthly Temperature: Covariance as a Function of Lag Distance
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Figure 7: Maximum monthly temperature covariance estimates as a function of lag. Top panel:
estimates over entire observational domain. Bottom panel: estimates within a one degree by one
degree box surrounding observation locations.

42



400

350

300

250

200 |

count

150

100 |

50

400

350

300

250 |

200

count

150

100

50

Figure 8: Histogram of Gibbs samples from the posterior distributions of a, and .
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(a) Posterior Mean; Ho (b) Posterior Mean; a,
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(c) Posterior Mean; Annual Harmonic Cosine Coeff. (d) Posterior Mean; Annual Harmonic Sine Coeff.
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Figure 9: Linear spatial trend contour maps based on posterior means. (a) fij; monthly temper-
ature site-specific mean, MRF mean (contour interval 2 deg F). (b) dg; same-site lagged autore-
gressive parameter MRF mean (contour interval .025). (c) f ; annual harmonic cosine coefficients
(contour interval -1). (d) g; annual harmonic sine coefficients (contour interval -.5).
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Posterior Mean; Annual Harmonic Amplitude

N. Latitude (deg)

100 98 96 94 92 90 88
W. Longitude (deg)

Posterior Mean; Annual Harmonic Phase (rad)

]

N. Latitude (deg)

37 EE— — — - :
100 98 96 94 92 90 88
W. Longitude (deg)
Figure 10: Linear spatial trend contour maps of annual harmonic amplitude and phase (contour
intervals 1 adn 0.01, respectively).
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X([96,41],90); Observations in Grid Box
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Figure 11: Histograms of Gibbs samples from prediction grid locations with observations in the
grid box (X ([96,41],90)) and without observations in the grid box (X ([94,42],170).
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Posterior Mean; X
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Figure 12: Posterior mean time series for X and Y (deg F). Location with observations

{[(94,43),]} and without observations {[(94,42),]}.
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Figure 13: Posterior mean spatial maps of X process for June during 1988, 1990, and 1993 (deg
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Figure 14: Posterior mean spatial maps of X process for June, July, and August during 1988 (deg
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